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† Dipartimento di Fisica dell’Università di Pisa, Piazza Torricelli 2, 56100 Pisa, Italy, and Istituto
Nazionale di Fisica Nucleare, Sezione di Pisa, Italy
‡ Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Dipartimento di Fisica dell’Università
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Abstract. Representations of the quantum algebraUq (ÂN ) are constructed on the space of
(N +1)-component anyons inR, extending analogous results on the lattice. Such representations
can be obtained in terms of both fermionic or bosonic anyons, showing that the hard-core
constraint is not necessary in the continuous case.

In the last few years much attention has been drawn to an enlarged concept of symmetry
represented by quantum algebras. It has been found that a great number of areas, from
conformal physics to integrable models, display such kind of underlying symmetries. The
common belief that the so-called generalized statistics are strictly tied with quantum algebras
has been confirmed in [1, 2]. In [2] a representation of the quantum algebraSUq(2) has
been explicity realized in terms of anyon creation and annihilation operators on the lattice.
The construction turns out to be a very natural generalization of the well known Schwinger
representation ofA1 = SU(2). As fermions are continuously deformed into anyons, by
varying the statistical parameter from zero to a genericϑ ∈ R, the SU(2) Schwinger
representation gets deformed intoUq(A1) = SUq(2), the deformation parameterq being
related to the statistical parameterϑ by

q = exp(iπϑ) . (1)

Such a construction has been further extended [3, 4] to the other non-exceptional quantum
algebras seriesUq(AN), Uq(BN), Uq(CN), Uq(DN), and recently [5] to their affine version
Uq(ÂN), Uq(B̂N), Uq(ĈN), Uq(D̂N). These constructions clearly show that anyons are
deeply related with quantum algebras, just as fermions (and bosons) are related with classical
Lie algebras. A technical, but very important, point in these representations is that they
are defined with anyons living on a lattice, so if one wishes to go over to the continuum,
one must take a limit which, as a rule, presents some difficulties. Moreover, only the
so called ‘fermionic’ anyons have been adopted so far. They satisfy the Pauli exclusion
principle, stating that no more then one anyon with given quantum numbers can be present
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at each lattice site. In this letter we construct representations of the quantum algebras
Uq(AN), Uq(ÂN) in the spirit of [5], but directly in the Fock space of anyons inR, both of
fermionic or bosonic type. As already observed in [2], if the rising step operators are realized
in terms of anyons with statistical parameterϑ , the corresponding lowering step operators
must be realized with anyons whose statistical parameter is−ϑ . Consequently, our first
goal will be to realize a common Fock space for anyons with both statistical parameters,
which we may consider to be mutually parity conjugate. Once this problem has been
solved, we will use the annihilation and creation operators to construct our representations.
These representations contain some arbitrary continuous parameters, which play the role of
displacement in the wavefunction, and thus mix the inner space and the space of coordinates.

Let us describe briefly the basic objects we will need in what follows. For convenience
we introduce the parameterη which takes the value+1 and−1 for bosonic and fermionic
anyons, respectively. The anyon exchange relations then read

aµ(x1) aν(x2) − η qε(x2−x1)δµ ν aν(x2) aµ(x1) = 0 (2)

a∗µ(x1) a∗ν(x2) − η qε(x2−x1)δµ ν a∗ν(x2) a∗µ(x1) = 0 (3)

aµ(x1) a∗ν(x2) − η q−ε(x2−x1)δµ ν a∗ν(x2) aµ (x1) = δν
µ δ(x1 − x2) . (4)

Herex1, x2 ∈ R, ε(x) is the sign function, which we assume to vanish at zero, andq is a
constant phase given by (1). The indicesµ, ν range from 1 toN . Here and in what follows
no sum convention is assumed unless explicitly stated. Even integer values ofϑ reproduce
bosons whenη = 1 and fermions whenη = −1. The Fock representation for anyon fields
strongly resembles that for CCR and CAR. As a one-particle Hilbert space one takes

H =
N⊕

a=1

L2(R, dx) . (5)

The elements off ∈ H will be represented as columns withN components. The scalar
product is

(f, g) =
∫

dx

N∑
µ=1

f †µ(x)gµ(x) =
N∑

µ=1

∫
dx f µ(x)gµ(x) (6)

where † stands for Hermitian conjugation. In this notation ann-particle wavefunction
ϕ ∈ Hn is a column whose entries areϕµ1...µn

(x1, . . . , xn). The direct sum

F(H) =
∞⊕

n=0

Hn (7)

whereH0 = C1, is called the Fock space overH. The elements ofF(H) can be represented
by sequences{ϕ = (ϕ(0), ϕ(1), . . . , ϕ(n), . . .) : ϕ(n) ∈ Hn} and the finite particle subspace
F0(H) ⊂ F(H) is defined as follows:ϕ ∈ F0(H) if and only if ϕ(n) = 0 for n large
enough. By constructionF0(H) is dense inF(H).

Let us define the subspaceHn
R of the functions inHn having the following exchange

property:

ϕµ1...µiµi+1...µn
(x1, . . . , xi, xi+1, . . . , xn)

= η qε(xi−xi+1)δµiµi+1 ϕµ1...µi+1µi ...µn
(x1, . . . , xi+1, xi, . . . , xn) . (8)

SettingH0
R = H0 andH1

R = H1 we define

FR(H) =
∞⊕

n=0

Hn
R . (9)
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We denote byF0
R(H) the corresponding dense subspace with finite particles. OnF0

R(H)

one defines the annihilation and creation operators as follows [6]:

[
a(f )ϕ

](n)

µ1...µn
(x1, . . . , xn) = √

n + 1
∫

dx

N∑
µ0=1

f †µ0(x)ϕ(n+1)
µ0µ1...µn

(x, x1, . . . , xn) (10)

[
a∗(f )ϕ

](n)

µ1...µn
(x1, . . . , xn) = 1√

n

n∑
k=1

ηk−1 q
∑k

j=1 ε(xj −xk)δµj µk fµk
(xk)

×ϕ
(n−1)

µ1...µ̂k ...µn
(x1, . . . , x̂k, . . . , xn) . (11)

Introducing the operator-valued distributionsaα(x) anda∗α(x) defined by

a(f ) =
∫

dx

N∑
α=1

f †α(x)aα(x) a∗(f ) =
∫

dx

N∑
α=1

fα(x)a∗α(x) (12)

one can indeed verify that the exchange relations (2)–(4) are satisfied. On the same space
F0

R(H) we also definẽa∗(f ), ã(f ) as

[
ã(f )ϕ

](n)

µ1...µn
(x1, . . . , xn) = √

n + 1 ηn

∫
dx

N∑
µ0=1

q
− ∑n

j=1 ε(x−xj )δµ0µj f †µ0(x)

×ϕ(n+1)
µ0µ1...µn

(x, x1, . . . , xn) (13)

[
ã∗(f )ϕ

](n)

µ1...µn
(x1, . . . , xn) = 1√

n

n∑
k=1

ηn−k q
∑n

j=k ε(xk−xj )δµkµj fµk
(xk)

×ϕ
(n−1)

µ1...µ̂k ...µn
(x1, . . . , x̂k, . . . , xn) . (14)

Direct computation shows thatã∗µ(x), ãµ(x) satisfy the exchange relations (2)–(4) withq

replaced byq−1, i.e. with ϑ replaced by−ϑ .
The quantum affine algebraUq(ÂN−1) is an associative algebra overC with identity 11,

whose generators{eα, fα, hα : α = 0, 1, . . . , N − 1} satisfy the commutation rules

[hα, eβ ] = aαβeβ [hα, hβ ] = 0

[hα, fβ ] = −aαβfβ [eα, fβ ] = δαβ [hα]q
(15)

along with the quantum Serre relations

1−aαβ∑
k=0

(−1)k
[

1 − aαβ

k

]
q

(eα)1−aαβ−keβ(eα)k = 0

1−aαβ∑
k=0

(−1)k
[

1 − aαβ

k

]
q

(fα)1−aαβ−kfβ(fα)k = 0 .

(16)

In equations (16)aαβ is the extended Cartan matrix of̂AN−1, and we used the common
notation

[a]q = qa − q−a

q − q−1

[
m

n

]
q

= [m]q !

[n]q ![m − n]q !
[m]q ! = [1]q [2]q · · · [m]q . (17)
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If we remove the valueα = 0, equations (15), (16) become the defining relations of the
quantum algebraUq(AN−1), which is therefore automatically included in our treatment. The
algebraUq(ÂN−1) has a central element (charge)γ , which is given by

γ =
N−1∑
α=0

hα . (18)

It is well known that Uq(ÂN−1) is endowed with a co-product1 : Uq(ÂN−1) →
Uq(ÂN−1) ⊗ Uq(ÂN−1), given by

1(hα) = hα ⊗ 11 + 11 ⊗ hα

1(eα) = eα ⊗ 11 + qhα ⊗ eα

1(fα) = fα ⊗ q−hα + 11 ⊗ wfα .

(19)

It is also useful to define, by recurrence, then-fold nested co-products1(n) : Uq(ÂN−1) →
Uq(ÂN−1)

⊗n:

1(1) = id 1(2) = 1

1(n+1) = (1 ⊗ id⊗(n−1)) ◦ 1(n) .
(20)

Using theN -component anyons introduced above, we shall construct a representation of the
quantum affine algebraUq(ÂN−1) with zero central charge; in particular, in this way we will
also obtain a representation of the quantum algebraUq(AN−1). Consider the fundamental
representation ofUq(ÂN−1), given by

eα 7→ Eα fα 7→ Fα hα 7→ Hα (21)

where

(Ei)
ν
µ = δµ iδ

ν i+1 (E0)
ν
µ = δµ Nδν 1

(Fi)
ν
µ = δµ i+1δ

ν i (F0)
ν
µ = δµ 1δ

ν N

(Hi)
ν
µ = δµ iδ

ν i − δµ i+1δ
ν i+1 (H0)

ν
µ = δµ Nδν N − δµ 1δ

ν 1 .

(22)

In equations (22) the indexi goes from 1 toN − 1, while µ, ν range from 1 toN . Let
{f (k)}k∈N be an arbitrary orthonormal basis inL2(R, dx). The vectors

f (k,α) ∈ H f (k,α)
µ (x) = δα

µf (k)(x) k ∈ N α = 1, . . . , N

are then an orthonormal basis inH. If ξ ∈ R, we denote byfξ the functionf translated by
ξ , i.e.fξ (x) = f (x−ξ). Let ξα denoteN arbitrary real numbers and consider the following
operators defined onF0

R(H):

J+
α =

∫
R

dx a∗µ(x) (Eα)νµ aν(x + ξα) = s-lim
m→∞

m∑
k=0

a∗(f (k,µ))(Eα)νµa(f
(k,ν)
ξα

)

J−
α =

∫
R

dx ã∗µ(x) (Fα)νµ ãν(x − ξα) = s-lim
m→∞

m∑
k=0

ã∗(f (k,µ))(Fα)νµã(f
(k,ν)
−ξα

)

J 0
α =

∫
R

dx a∗µ(x) (Hα)νµ aν(x) = s-lim
m→∞

m∑
k=0

a∗(f (k,µ))(Hα)νµa(f (k,ν)) .

(23)
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In these equations a sum overµ, ν is understood.{J±
α , J 0

α } are well defined onF0
R(H).

The simplest way to verify this statement is to establish their action explicitly. One has

[J+
α ϕ](n)

µ1...µn
(x1, . . . , xn) =

n∑
k=1

ηk−1
N∑

νk=1

q
∑k

h=1 ε(xh−xk)δ
µk
µh (Eα)νk

µk

×ϕ
(n)

νkµ1...µ̂k ...µn
(xk + ξα, x1, . . . , x̂k, . . . , xn) (24)

[J−
α ϕ](n)

µ1...µn
(x1, . . . , xn) =

n∑
k=1

ηn−k
N∑

νk=1

q
∑n

h=k ε(xk−xh)δ
µk
µh (Fα)νk

µk

×ϕ
(n)

µ1...µ̂k ...µnνk
(x1, . . . , x̂k, . . . , xn, xk − ξα) (25)

[J 0
αϕ](n)

µ1...µn
(x1, . . . , xn) =

n∑
k=1

N∑
νk=1

(Hα)νk

µk
ϕ(n)

µ1...νk ...µn
(x1, . . . , xn) . (26)

These operators are bounded on eachHn
R and theJ 0

α are selfadjoint. One may check by
direct computation that they satisfy the defining relations for the generators ofUq(ÂN−1)

and that the central charge is

γ =
N−1∑
α=0

J 0
α = 0 . (27)

In the case of lattice anyons, a non-trivial central charge can be obtained by means
of a Bogoljubov transformation. The naive generalization of this transformation to the
continuous case turns out to be ill-defined, so how to get representations with non-zero
central charge in the above framework remains an open question. Note that forη = 1
the operators (23) are written in terms of ‘bosonic’ anyons. This is different from what
happens on the lattice [2–5], where the analogues ofJ±

α andJ 0
α can be constructed only using

‘fermionic’ anyons. In this respect our realization shows that this ‘hard-core’ constraint is
essential only for the lattice construction. Equations (24)–(26) also clarify the role of the
real parameters{ξ}: indeed explicit computations show that different choices for{ξ} give
rise to unitarily inequivalent representations ofUq(ÂN−1). If we put all theξα = 0, J+

α , J−
α

andJ 0
α become multiplicative operators, acting in the spaceHn

R respectively with matrices

J +
α

(n) =
n∑

k=1

qε(x1−xk)Hα ⊗ qε(x2−xk)Hα ⊗ · · · ⊗ qε(xk−1−xk)Hα ⊗ Eα ⊗ 11⊗(n−k)

J −
α

(n) =
n∑

k=1

11⊗(k−1) ⊗ Fα ⊗ qε(xk+1−xk)Hα ⊗ qε(xk+2−xk)Hα ⊗ · · · ⊗ qε(xn−xk)Hα

J 0
α

(n) =
n∑

k=1

11⊗(k−1) ⊗ Hα ⊗ 11⊗(n−k) .

(28)

In this case it is interesting to analyse if there is an interplay between second quantization
of the operatorsJ+

α , J−
α , J 0

α , i.e. their action on then-particle space with respect to their
action on the one-particle space, and the co-product (19) of the quantum algebra. One may
verify that if x1 > x2 > · · · > xn, thenJ 0,±

α

(n)
is related toJ 0,±

α

(1)
by the n-fold nested

coproduct (20), while ifx1 < x2 < · · · < xn, this connection is given by1(n)

q−1, where1q−1

is obtained by replacingq with q−1 in (19) and is again a co-product forUq(ÂN−1). The
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nature of this interplay in the intermediate cases, as well as for non-vanishing{ξ}, is yet to
be clarified.

In conclusion, we have explicitly obtained a second quantized representation of the
quantum algebrasUq(AN), Uq(ÂN) on the Fock space of continuous one-dimensional
anyons, both of bosonic and fermionic type. Our construction can be easily extended
to s-dimensional anyons. The only slightly non-trivial point consists in the replacement
of the sign function. In one dimension there is a natural order, which allows for the
definition of the sign function. In higher dimensions, one must fix an external vectoru and
replaceε(x) by ε(x · u). This is the algebraic reason for the presence of a ‘tail’ in two
[7] and higher dimensions. The representations that we have obtained depend on arbitrary
displacement parameters{ξ}, and are in general inequivalent for different choices of these
parameters. Whether it is possible to find continuous anyonic representations ofUq(ÂN)

with non-vanishing central charge remains an open question.
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